3.535 \(\int \sqrt{\sec (c+d x)} (a+a \sec (c+d x)) (A+B \sec (c+d x)+C \sec ^2(c+d x)) \, dx\)

Optimal. Leaf size=181 \[ \frac{2 a (3 A+B+C) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} \text{EllipticF}\left (\frac{1}{2} (c+d x),2\right )}{3 d}+\frac{2 a (5 A+5 B+3 C) \sin (c+d x) \sqrt{\sec (c+d x)}}{5 d}-\frac{2 a (5 A+5 B+3 C) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{5 d}+\frac{2 a (B+C) \sin (c+d x) \sec ^{\frac{3}{2}}(c+d x)}{3 d}+\frac{2 a C \sin (c+d x) \sec ^{\frac{5}{2}}(c+d x)}{5 d} \]

[Out]

(-2*a*(5*A + 5*B + 3*C)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(5*d) + (2*a*(3*A + B
 + C)*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(3*d) + (2*a*(5*A + 5*B + 3*C)*Sqrt[Sec
[c + d*x]]*Sin[c + d*x])/(5*d) + (2*a*(B + C)*Sec[c + d*x]^(3/2)*Sin[c + d*x])/(3*d) + (2*a*C*Sec[c + d*x]^(5/
2)*Sin[c + d*x])/(5*d)

________________________________________________________________________________________

Rubi [A]  time = 0.22118, antiderivative size = 181, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 7, integrand size = 41, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.171, Rules used = {4076, 4047, 3768, 3771, 2639, 4046, 2641} \[ \frac{2 a (5 A+5 B+3 C) \sin (c+d x) \sqrt{\sec (c+d x)}}{5 d}+\frac{2 a (3 A+B+C) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 d}-\frac{2 a (5 A+5 B+3 C) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{5 d}+\frac{2 a (B+C) \sin (c+d x) \sec ^{\frac{3}{2}}(c+d x)}{3 d}+\frac{2 a C \sin (c+d x) \sec ^{\frac{5}{2}}(c+d x)}{5 d} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[Sec[c + d*x]]*(a + a*Sec[c + d*x])*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2),x]

[Out]

(-2*a*(5*A + 5*B + 3*C)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(5*d) + (2*a*(3*A + B
 + C)*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(3*d) + (2*a*(5*A + 5*B + 3*C)*Sqrt[Sec
[c + d*x]]*Sin[c + d*x])/(5*d) + (2*a*(B + C)*Sec[c + d*x]^(3/2)*Sin[c + d*x])/(3*d) + (2*a*C*Sec[c + d*x]^(5/
2)*Sin[c + d*x])/(5*d)

Rule 4076

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^
(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> -Simp[(b*C*Csc[e + f*x]*Cot[e + f*x]*(d*Csc[e + f*x
])^n)/(f*(n + 2)), x] + Dist[1/(n + 2), Int[(d*Csc[e + f*x])^n*Simp[A*a*(n + 2) + (B*a*(n + 2) + b*(C*(n + 1)
+ A*(n + 2)))*Csc[e + f*x] + (a*C + B*b)*(n + 2)*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d, e, f, A, B, C,
n}, x] &&  !LtQ[n, -1]

Rule 4047

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(
C_.)), x_Symbol] :> Dist[B/b, Int[(b*Csc[e + f*x])^(m + 1), x], x] + Int[(b*Csc[e + f*x])^m*(A + C*Csc[e + f*x
]^2), x] /; FreeQ[{b, e, f, A, B, C, m}, x]

Rule 3768

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Csc[c + d*x])^(n - 1))/(d*(n -
 1)), x] + Dist[(b^2*(n - 2))/(n - 1), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1
] && IntegerQ[2*n]

Rule 3771

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 4046

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]^2*(C_.) + (A_)), x_Symbol] :> -Simp[(C*Cot[
e + f*x]*(b*Csc[e + f*x])^m)/(f*(m + 1)), x] + Dist[(C*m + A*(m + 1))/(m + 1), Int[(b*Csc[e + f*x])^m, x], x]
/; FreeQ[{b, e, f, A, C, m}, x] && NeQ[C*m + A*(m + 1), 0] &&  !LeQ[m, -1]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rubi steps

\begin{align*} \int \sqrt{\sec (c+d x)} (a+a \sec (c+d x)) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx &=\frac{2 a C \sec ^{\frac{5}{2}}(c+d x) \sin (c+d x)}{5 d}+\frac{2}{5} \int \sqrt{\sec (c+d x)} \left (\frac{5 a A}{2}+\frac{1}{2} a (5 A+5 B+3 C) \sec (c+d x)+\frac{5}{2} a (B+C) \sec ^2(c+d x)\right ) \, dx\\ &=\frac{2 a C \sec ^{\frac{5}{2}}(c+d x) \sin (c+d x)}{5 d}+\frac{2}{5} \int \sqrt{\sec (c+d x)} \left (\frac{5 a A}{2}+\frac{5}{2} a (B+C) \sec ^2(c+d x)\right ) \, dx+\frac{1}{5} (a (5 A+5 B+3 C)) \int \sec ^{\frac{3}{2}}(c+d x) \, dx\\ &=\frac{2 a (5 A+5 B+3 C) \sqrt{\sec (c+d x)} \sin (c+d x)}{5 d}+\frac{2 a (B+C) \sec ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{3 d}+\frac{2 a C \sec ^{\frac{5}{2}}(c+d x) \sin (c+d x)}{5 d}+\frac{1}{3} (a (3 A+B+C)) \int \sqrt{\sec (c+d x)} \, dx-\frac{1}{5} (a (5 A+5 B+3 C)) \int \frac{1}{\sqrt{\sec (c+d x)}} \, dx\\ &=\frac{2 a (5 A+5 B+3 C) \sqrt{\sec (c+d x)} \sin (c+d x)}{5 d}+\frac{2 a (B+C) \sec ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{3 d}+\frac{2 a C \sec ^{\frac{5}{2}}(c+d x) \sin (c+d x)}{5 d}+\frac{1}{3} \left (a (3 A+B+C) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{1}{\sqrt{\cos (c+d x)}} \, dx-\frac{1}{5} \left (a (5 A+5 B+3 C) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \sqrt{\cos (c+d x)} \, dx\\ &=-\frac{2 a (5 A+5 B+3 C) \sqrt{\cos (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{\sec (c+d x)}}{5 d}+\frac{2 a (3 A+B+C) \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{\sec (c+d x)}}{3 d}+\frac{2 a (5 A+5 B+3 C) \sqrt{\sec (c+d x)} \sin (c+d x)}{5 d}+\frac{2 a (B+C) \sec ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{3 d}+\frac{2 a C \sec ^{\frac{5}{2}}(c+d x) \sin (c+d x)}{5 d}\\ \end{align*}

Mathematica [C]  time = 6.26046, size = 366, normalized size = 2.02 \[ \frac{2 a e^{-i c} \left (-1+e^{2 i c}\right ) \csc (c) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \left ((5 A+5 B+3 C) e^{i (c+d x)} \left (1+e^{2 i (c+d x)}\right )^{5/2} \text{Hypergeometric2F1}\left (\frac{1}{2},\frac{3}{4},\frac{7}{4},-e^{2 i (c+d x)}\right )-5 i (3 A+B+C) \left (1+e^{2 i (c+d x)}\right )^2 \sqrt{\cos (c+d x)} \text{EllipticF}\left (\frac{1}{2} (c+d x),2\right )-15 A e^{i (c+d x)}-30 A e^{3 i (c+d x)}-15 A e^{5 i (c+d x)}-15 B e^{i (c+d x)}-30 B e^{3 i (c+d x)}-5 B e^{4 i (c+d x)}-15 B e^{5 i (c+d x)}+5 B-3 C e^{i (c+d x)}-24 C e^{3 i (c+d x)}-5 C e^{4 i (c+d x)}-9 C e^{5 i (c+d x)}+5 C\right )}{15 d \left (1+e^{2 i (c+d x)}\right )^2 \sec ^{\frac{3}{2}}(c+d x) (A \cos (2 (c+d x))+A+2 B \cos (c+d x)+2 C)} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[Sec[c + d*x]]*(a + a*Sec[c + d*x])*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2),x]

[Out]

(2*a*(-1 + E^((2*I)*c))*Csc[c]*(5*B + 5*C - 15*A*E^(I*(c + d*x)) - 15*B*E^(I*(c + d*x)) - 3*C*E^(I*(c + d*x))
- 30*A*E^((3*I)*(c + d*x)) - 30*B*E^((3*I)*(c + d*x)) - 24*C*E^((3*I)*(c + d*x)) - 5*B*E^((4*I)*(c + d*x)) - 5
*C*E^((4*I)*(c + d*x)) - 15*A*E^((5*I)*(c + d*x)) - 15*B*E^((5*I)*(c + d*x)) - 9*C*E^((5*I)*(c + d*x)) - (5*I)
*(3*A + B + C)*(1 + E^((2*I)*(c + d*x)))^2*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2] + (5*A + 5*B + 3*C)*E^
(I*(c + d*x))*(1 + E^((2*I)*(c + d*x)))^(5/2)*Hypergeometric2F1[1/2, 3/4, 7/4, -E^((2*I)*(c + d*x))])*(A + B*S
ec[c + d*x] + C*Sec[c + d*x]^2))/(15*d*E^(I*c)*(1 + E^((2*I)*(c + d*x)))^2*(A + 2*C + 2*B*Cos[c + d*x] + A*Cos
[2*(c + d*x)])*Sec[c + d*x]^(3/2))

________________________________________________________________________________________

Maple [B]  time = 6.857, size = 741, normalized size = 4.1 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*sec(d*x+c))*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)*sec(d*x+c)^(1/2),x)

[Out]

-a*(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x
+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-
2/5*C/(8*sin(1/2*d*x+1/2*c)^6-12*sin(1/2*d*x+1/2*c)^4+6*sin(1/2*d*x+1/2*c)^2-1)/sin(1/2*d*x+1/2*c)^2*(12*Ellip
ticE(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*sin(1/2*d*x+1/2
*c)^4-24*sin(1/2*d*x+1/2*c)^6*cos(1/2*d*x+1/2*c)-12*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c
)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*sin(1/2*d*x+1/2*c)^2+24*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)+3*El
lipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)-8*sin(1/2*d*
x+1/2*c)^2*cos(1/2*d*x+1/2*c))*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)+4*(1/2*C+1/2*B)*(-1/6*cos(
1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(cos(1/2*d*x+1/2*c)^2-1/2)^2+1/3*(sin(1/2*
d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*Ell
ipticF(cos(1/2*d*x+1/2*c),2^(1/2)))+4*(1/2*A+1/2*B)*(-(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^
(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)+2*(-2*sin(1/2
*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2)/sin(1/2*d*x+1/2*c)^2/(2*sin
(1/2*d*x+1/2*c)^2-1))/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A\right )}{\left (a \sec \left (d x + c\right ) + a\right )} \sqrt{\sec \left (d x + c\right )}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)*sec(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)*(a*sec(d*x + c) + a)*sqrt(sec(d*x + c)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left ({\left (C a \sec \left (d x + c\right )^{3} +{\left (B + C\right )} a \sec \left (d x + c\right )^{2} +{\left (A + B\right )} a \sec \left (d x + c\right ) + A a\right )} \sqrt{\sec \left (d x + c\right )}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)*sec(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

integral((C*a*sec(d*x + c)^3 + (B + C)*a*sec(d*x + c)^2 + (A + B)*a*sec(d*x + c) + A*a)*sqrt(sec(d*x + c)), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))*(A+B*sec(d*x+c)+C*sec(d*x+c)**2)*sec(d*x+c)**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A\right )}{\left (a \sec \left (d x + c\right ) + a\right )} \sqrt{\sec \left (d x + c\right )}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)*sec(d*x+c)^(1/2),x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)*(a*sec(d*x + c) + a)*sqrt(sec(d*x + c)), x)